# S.E. (Civil) (Part - II) (Semester - III) Examination, <br> December - 2014 ENGINEERING MATHEMATICS - III <br> Sub. Code : 42654 

Day and Date : Friday, 05-12-2014
Time : $10.00 \mathrm{a} . \mathrm{m}$. to $01.00 \mathrm{p} . \mathrm{m}$.
Instructions : 1) Attempt any three questions from each section.
2) Figures to right indicate full marks.
3) Use of non programmable calculator is allowed.
4) Use one answer book for both the sections.

## SECTION - I

Q1) Solve:
a) $\left(D^{2}-5 D+6\right) y=e^{x} \cos 2 x$.
b) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x \sin x$.
c) $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4}$.

Q2) The differential equation satisfied by a beam uniformly loaded ( $\mathrm{Wkg} /$ meter), with one end fixed and the second end subjected to tensile force $P$, is given by

$$
\text { E.I. } \frac{d^{2} y}{d x^{2}}=P y-\frac{1}{2} W x^{2} .
$$

Show that the elastic curve for the beam with conditions $y=0=\frac{d y}{d x}$ at $x=0$ is given by

$$
y=\frac{W}{P n^{2}}(1-\cosh n x)+\frac{W x^{2}}{2 P} \text { where } n^{2}=\frac{P}{E . I}
$$

Q3) Solve :
a) $y^{2} p-x y q=x(z-2 y)$
b) $p^{2}+q^{2}=z^{2}(x+y)$
c) $p\left(1+q^{2}\right)=q(z-a)$

Q4) a) Given that $f(x)=x+x^{2}$ for $-\pi<x<\pi$, find the Fourier expansion of $f(x)$ and hence deduce that $\frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+$
b) Obtain half range sine series for

$$
f(x)= \begin{cases}x & ; 0 \leq x \leq a \\ a & ; a \leq x \leq \pi-a \\ \pi-x & ; \pi-a \leq x \leq \pi\end{cases}
$$

## SECTION - II

Q5) a) Record of test of intelligence ratio (I.R.) and engineering skills (E.S.) of 10 students are given in the following table. Calculate coefficient of correlation.

| Student | A | B | C | D | E | F | G | H | I | J |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I.R. $(x)$ | 105 | 104 | 102 | 101 | 100 | 99 | 98 | 96 | 93 | 92 |
| E.S $(y)$ | 101 | 103 | 100 | 98 | 95 | 96 | 104 | 92 | 97 | 94 |

b) In a partially destroyed laboratory record, only the lines of regression of $y$ on $x$ and $x$ on $y$ are available as $4 x-5 y+33=0$ and $20 x-9 y=107$ respectively. Calculate $\bar{x}, \bar{y}$ and the coefficient of correlation between $x$ and $y$.
c) Fit a second degree parabola $y=a+b x+c x^{2}$ to the following data: $[6$

| $x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 4.63 | 2.11 | 0.67 | 0.09 | 0.63 | 2.15 | 4.58 |

Q6) a) A random variable $x$ has the following probability distributions.

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $p(x)$ | $a$ | $3 a$ | $5 a$ | $7 a$ | $9 a$ | $11 a$ | $13 a$ | $15 a$ | $17 a$ |

Determine:
i) The value of $a$,
ii) $\quad p(x<3), p(x>3), p(0<x \leq 5)$.
b) The probability that a bomb dropped from a plane will strike the target is $1 / 5$. If six bombs are dropped, find the probability that
i) Exactly two will strike the target,
ii) At least two will strike the target.
c) Between 2 and 4 P . M. the average of phone calls per minute coming into the switch board of a company is 2.5 . Use Poisson distribution to find the probability that during one particular minute there will be
i) Non phone call at all,
ii) Exactly 3 calls.

Q7) a) Find the directional derivative of $f(x, y)=x y^{2}+y z^{2}$ at the point $(2,-1,1)$ along the normal to the surface $x y+y z+z x=3$ at the point $(1,1,1)$.
b) If $\bar{r}=x i+y j+z k$ with $r=|\bar{r}|$ and $\bar{a}$ is a constant vector, prove that

$$
\begin{equation*}
\nabla \times\left(\frac{\bar{a} \times \bar{r}}{r^{n}}\right)=\frac{(2-n)}{r^{n}} \bar{a}+\frac{n(\bar{a} \cdot \bar{r})}{r^{n+2}} \bar{r} . \tag{6}
\end{equation*}
$$

c) Show that the vector field defined by
$\bar{F}=(y \sin z-\sin x) i+(x \sin z+2 y z) j+\left(x y \cos z+y^{2}\right) k$ is irrotational and find its scalar potential.

Q8) a) Verify Green's theorem for $\int_{C}\left[\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ where $C$ is the boundary of the region bounded by $x=0, y=0$ and $x+y=1$.
b) Use the Stoke's theorem to evaluate
$\int_{C}[(x+2 y) d x+(x-z) d y+(y-z) d z]$ where $C$ is boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$ oriented in the anti-clockwise direction.

## (i) (i) (i) (i)

